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TECHNICAL MEMORANDUM 1272

CRITICAL VELOCITIES OF ULTRACENTRIFUGES*

By V. I. Sokolov

In chemical industry, it is often necessary to deal with the
phenomenon of instability of operation of ultracentrifuges that lead,
in a number of cases, to breakdown, accidents, and early wear of
the instrument. In these cases, understanding of the phenomenon that
may help to remedy the condition is not always found.

The characteristics of the passage through the eritical velocities
of ultracentrifuges are discussed and the corresponding practical con-
clusions are presented in this paper.

The Euler differential equations of rotation of a solid body are
applied.

The following constructions are made: the-.-fixed axes i, N, and
% with the origin at the point O (fig. 1); the axis of symmetry of the
centrifuge rotor z; the nodal line I perpendicular to the plane of
¥, z; and finally, the axis k perpendicular to the axes 1z, I.

By applying the Euler equations of the rotation of a so0lid body and
according to the notation of Nikolai (reference 1)

ao; A
g T % T %=1
d .

do,

2 =
3 tP1% - 91 =1y

/

The rotation of the centrifuge rotor may be considered as a regular
precession of the symmetrical gyroscope. The angular velocity w of
the rotor is therefore the angular velocity of this precession and the
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gxis & 1is the axis of precession. By laying off the angular velocity
of the drum, or more accurately, the trihedron formed by the axes I,
k, and z that are assumed constant on the axis ¢, and by projecting
it on the axes I, k, and 2z, the following equations are obtained:

Pl-_'ﬁ
q = ® sin B (2)
rl =W+ o | cos B

The velocilty @ is the result of the action of the Coriolis forces
and, by comparison with w, is a small magnitude. For simplification of
the solution, it is assumed that

I‘.‘ = { COS

Rovl )

(2a)

In other words, the assumption, often used in the theory of
vibrations, is made that the principal axis of the rotor 2z always
remains in the plane including the vertical (the initial position of
the axis of the shaft) and rotates with the same constant angular velo-
city ® with which the drum rotates.

The center of inertia of the rotor is assumed to lie on its axes
of symmetry O and 05 The axes I, k, and =z will then be the

principal axes of inertia of the rotor at the point Ol because, from
the symmetry in regard to the axis 2z, all straight lines drawn perpen-
dicular to this axis through the point 0, are principal axes of

inertia. From this assumption, it follows that the moments oI"’k’ o,
are

01=Ap
= A
Ok = Aq
0 =Cr
z

vhere A and C are the equatorial (at point Ol) and polar moments
of inertia.
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From equations (2)

g, = AR
g, = A sin B _ (3)
CZ = Cw cos B

By linearizing, the following equations are obtalned:

Py =B )

o, = 4B

o > (4)
G, = AP

I‘l=(D

g, = Co

In equations (1), L, = L, = O but the moment of the external

forces applied to the rotor relative to the axis I 1is determined by
the expression

3]
~—

Ly = - 8y h° sin B + Gh, sin B (

where 611 is the force applied at the end of the rotor spindle that

produces unit rotation in the case vhere the spindle is immovably
fixed, and G 1is the weight of the rotor; h and h, are shown in

figure 1.

"By neglecting the gravitatiohal force and by replacing sin 8
by B '

2
Ly = - 897 h™pB (8)
By substituting in the Euler equation the values of the magnitudes
that are used, the following equation is obtained:

wzlc—'AIB—;—-allhzs (7)




4 : N NACA T 1272

Because the nonuniform distribution of the mass of the rotor
results in a deviation of the principal axis of inertia from the verti-
cal by the angle Bp, equation (7) must be written as

2

w? ‘c - A B (8)

B + Bg .: -8, h

vwhere

B = Bg e (9)

(10)

In order to complete the solution and obtain a computation formula,
611 is determined.

In the corresponding constructions of the usual type of centrifuges,
the spindle is assumed to be of conical shape. In determining 817, the

spindle may be considered as a beam with the large cross section built
in. The fixing of the beam corresponds to the Jjoining to the spindle
with the centrifuge rotor (fig. 2).

On the basis of the Mohr formula, the displacement of the end of
the beam Aqq may be determined by the equation

at+l

Dqq = — ax (11)

where M 1is the bending moment, E 1is the modulus of elasticity, and
I dis the moment of inertia of the beam cross section; a and 1 are
shown in figure 2.

The moment of inertia at any section of the spindle is

I= EEE (12)
4
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where r 1is the radius of the spindle cross section. As follows
from figure 2, r = kx and therefore

T = Ekfzzf ' (13)

Conversely, the bending moment due to unit force applied at the
distance ‘a from the origin of the coordinates (at the tip of the
beam) is

M=x-a

The expressions for I and M are substituted in equation (il)
to give
b
4 |X - a|2

N4 = dx (11a)
11 nk4 E 4

4 1 a 1  ab
Dyq = =t = -5 - — (14)
117 A |32 783

By denoting the largest diameter of the spindle by R and the
smgllest diameter by Y k, a, and b are determined. In accordance

with figure 2
_ R -',I‘o

X = 7 (15)
1
a=__0 (16)
R - ro
o r Z
0] R
b=1+ R - 7o =1 B T (17)
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Finally

3 r r
1 41 0, 1 _1_To (18)

811 nEIR - rol3 ré 3ro R zp

The obtained result is substituted in the formula for Warp to
give

2 3
h® xE|R - r
Wor = l Ol (19)
r Ir
0 1 1 0 3
A-Cl|l=mt+e=—-35- =41
| R vy R 33

Because ultracentrifuges operate at velocities higher than the
critical, it is impossible to ignore the passing of the rotor through
the critical point.

Factors that affect the passage of the centrifuge rotor through
the critical velocity are to be considered.

Two methods exist by which the passage of the ultracentrifuge
rotors through the critical velocities may be affected. The first
method provides a rapid start that excludes an inadmissible increase
in energy of the forced vibrations and may be applied to small centri-
fuges of various types. The second method restricts the amount of
bending of the spindle when passing through the critical point by means
of rings formed by suitable plates. The second method is the one
applied most often and will be subsequently considered with the aid
of a method proposed by Kapitsa (reference 2).

As has been shown by Kapitsa, the critical point separates two
qualitatively different types of rotation. The transition from one
motion to the other for the ultracentrifuge is discussed.

In the first period of the motion, the gyroscopic couple balanced
by the elastic force of the spindle is determined by the left side of
equation (8).

For a certain value of the angular velocity w,, the head of the
rotor touches the restricting surface. The gap between the head and
the ring is denoted by e. The angle of inclination of the rotor axis



NACA ™ 1272

" “corresponding to the contact of the restricting ring will be equal to

B = e/hs, where h3 is the distance from the lower support to the
ring. ' :

The value of B, is substituted in equation (8) and is solved for

wlz by replacing -hzall/C-A with the value wcrz. Thus

= Wy ——— 20
(Dl CI‘113B0+e ( )

When the velocity of the rotor reaches the value w;, the deflection
of the shaft ceases to increase because the restricting ring prevents
it.

After contact and with increase in angular velocity, the head of
the rotor presses against the restricting ring through the centrifugal
force. At first the head slides along the surface. When the friction
force between the head and the ring reaches a certain value, however,
the rotor starts to roll along the ring in the opposite direction and
the spindle immediately straightens out. )

The value of wp corresponding to the stralghtening out of the
spindle is determined.

The contzct of the rotor with the ring changes the value ol the
moment of the external forces determined by equation (1). The moment
of the reaction force of the ring Qhzy 1is added to the moment of the
elagstic force of the bending spindle.

The angle between the plane of action of the gyroscopic moment and
the bending plane including the point of contact is denoted by 713 the
moment acting in this case is determined by the equation

e

c - AHBl + BO cos Yy

* By denoting as Q the reaction force of the ring, the following
equation may be written:

a@l c ~ AI

By + Bg cos vl: - 8,5 h%p - Qhg (21)
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The sliding of the head of the rotor along the ring is accompanied
by the appearance of the tangential force pQ, where u is the coef-
fieient of friction. The condition for the existence of motion of the
first kind must be

BO w? |A - CI sin v

From equations (21) and (22), the following equation is obtained
by the Kapitsa method (reference 2):

B 2 - o
1 sin Y - cos Y>B_1__‘D_g__2_cr (23)
3% 0 wo
2
B
i 5 = L ) (23a)
Doy 1
Bl - BO l+:1-2'

where 0o is the angular velocity ccrresponding to the straight-

ening of the spindie. The condition of the passage through the
critical velocity is obtained in the form

B
s, hs X (24)

By denoting the gap between the head of the rotor and the ring
as e

e 1
—_— 1+ =5 (25)
hzB ué

The preceding inequality shows that the ultracentrifuge rotor cannot
pass through the critical velocity if the space between the head and
the ring is small, if the coefficient of friction between them is emall,
or finally, if the unbalance of the rotor is large.
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The increase in the gap e, however, is limited.by the strength
of the spindle.

The maximum permissible value of e 1is determined. The displace-
mnent of the end of the rotor spindle under the action of a unit force
is A 1+ The stress arising at the place where the spindle is stopped,
in the case where the force x 1is agpplied to the end of the spindle,
is

o= x1/W

where W 1is the moment of resistance of the section and the deflection
is equal to Ajqx. By giving a value of the deflection equal to e

corresponding to the occurrence in the critical section of a stress
equal to the permissible stress g

z
A oW
U .
e = Ajyx = —— (26)
In accordance with equation (18)
12 R4 (o} r
e=_______i_g __(22-;-?1_-%{_-19_2 (27)
iy
ElR-rO R 0 SR
or
2 2
Ay 4 ra“R
e=—--? _|r r24+ 2 -r5_8 (23)
310 T 3
ElR—rO 0

The pressure at the upper bearing and at the instant of the passage
of the rotor through the critical velocity is determined.

In equation (26), the pressure on the bearing is evidently equal
to the magnitude x or '
o W

After passing through the critical point, the spindle remains
bent by an amount practically equal to Boh. The force due to the

bending transmitted on the bearing is equal to

51,7 B
11 70
xl = _._._Tl___ (30)



10 : _ NACA ™ 1272

or by substituting the value ®y; from eguation (10)

“brz IA - CI Po

3 (31)

Xl=

CONCLUSIONS

Particular attention is to be paid to the problem of the passage
of an utlracentrifuge rotor through the critical velocity. The dif-
Ticulties encountered in the practical use of ultracentrifuges are
connected with this passage.

The dynamical balance of the rotors has often been neglected,
whereas their balance increases in connection with the too frejuent
removal of the rotors from the body of the centrifuge for cleaning.
A result of the increase in the unbalance may be the loss in the
ability to pass through the critical velocity and the rapid wear of
the bearings (the force acting on the bearing, ecuation (31)).

The preceding discussion points out the facltors that affect the
passage of rotors through the critical point, namely, the gap between
the head and the ring, the coefficient of friction, and the unbalance.
These factors cannot be excluded in the operation and design of
uwltracentrifuges.

Translated by S. Reiss,
National Advisory Committee
for Aeronautics.
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Figure 1.
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